Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries

نویسندگان

  • Jungwon Kang
  • Vinod Mathew
  • Jihyeon Gim
  • Sungjin Kim
  • Jinju Song
  • Won Bin Im
  • Junhee Han
  • Jeong Yong Lee
  • Jaekook Kim
چکیده

A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20-30 nm. When tested for Li-insertion properties in the potential windows of 3-4.3 and 3-4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.

A three-dimensionally ordered macroporous (3DOM) Li3V2(PO4)3/C cathode material with small-sized macropores (50-140 nm) is successfully synthesized using a colloidal crystal array. The 3DOM architecture is built up from fully densely sintered Li3V2(PO4)3/C nanocomposite ceramics particles. Such a 3DOM Li3V2(PO4)3/C micrometer sized particle combines the advantages of both Li3V2(PO4)3 nanocrysta...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries

Nanomaterials are extensively studied in electrochemical energy storage and conversion systems because of their structural advantages. However, their volumetric energy density still needs improvement due to the high surface area, especially the carbon based nanocomposites. Constructing hierarchical micro-scaled materials from closely stacked subunits is proposed as an effective way to solve the...

متن کامل

Manipulating Size of Li3V2(PO4)3 with Reduced Graphene Oxide: towards High-Performance Composite Cathode for Lithium Ion Batteries

Lithium vanadium phosphate (Li3V2(PO4)3, LVP)/reduced graphene oxide (rGO) composite is prepared with a rheological method followed by heat treatment. The size and interface of LVP particles, two important merits for a cathode material, can be effectively tuned by the rGO in the composite, which plays as surfactant to assist sol-gelation and simultaneously as conductive carbon coating. As a con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014